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It is proposed that, in reporting results of crystal structure refinements that include anisotropic temper- 
ature parameters, the covariances involving the temperature parameters be expressed in terms of the 
following six parameters: the lengths of the three principal axes of the vibrational ellipsoids and the 
orientational angles about these three axes. Equations are presented for deriving the covariances that 
relate to these new parameters from the covarianees given in terms of the primary parameters B,z. 

In reporting the results of a crystal structure analysis 
that includes adjustments of anisotropic thermal 
parameters, it is the common practice to list the magni- 
tudes U. ( i= 1,2,3) of the principal axes of a vibra- 
tional ellipsoid and the direction cosines of these axes 
relative to a crystal coordinate system with axes a i. 
Thus, twelve quantities - three U. 's  and nine direction 
cosines - are presented, of which only six are inde- 
pendent, because of the constraints on the cosines. 
Along with these twelve derived parameters are often 
presented their associated standard deviations (and 
sometimes covariances as well). The three standard 
deviations a(U.)  of the magnitudes of the principal 
axes are readily interpretable. It is more difficult, how- 
ever, to understand the meaning of the nine standard de- 
v;ations associated with the direction consines, not only 
because of the constraints among them but also be- 
cause of the difficulty of visualization. We suggest here 
an alternative approach to presenting the uncertainties 
in the orientations of the principal axes. In particular, 
we suggest that these uncertainties be represented as 
uncertainties in the angular displacements e~ ( e t - e ,  
0C2 ~---~, 0C 3 ~ y) of the ellipsoid around its principal axes. 
For example, the quantity a(y) in Fig. 1 represents the 
uncertainty of orientation of the ellipsoid with respect 
to a rotation about the eigenvector c. Note that while 
c~ =f l=  y = 0, the variances and covariances relating to 
these angles need not be zero. 

To derive expressions for variances and covariances 

* Contribution No. 4380. 

that involve c~, fl, and 7,, we presume that the temper- 
ature parameters Bk~ have been transformed to the 
coordinate system in which the coordinate axes are 
parallel to the eigenvectors of the Bkt. This is achieved 
by a similarity transformation that diagonalizes Bkz 
(see, for example, Rollett & Davies, 1955; Waser, 
1955; Busing & Levy, 1958) by means of a matrix Gi~, 

k 1 

The ~ j  are Kronecker deltas, and the U~j are the 
diagonalized values of the temperature parameters; we 
have found it convenient to introduce the new symbols, 
V~= U,. t Variances and covariances are attached to 
all parameters Uij including those that are zero. The 
covariance matrix associated with the U~j is related to 
that associated with the Bkt by 

~U~ ~Ukz 
coy (U~. l, Ukl) = ~ ~B.t, ~Bca coy (B.b, Boa) 

a .b .c .d  

= Z G,oG bCkc6,. cov (Gob, so,). (2) 
a ,b ,c ,d  

t Important aspects of these matters, including the trans- 
formation to main axes in oblique crystal systems, were re- 
cently summarized by Cerrini (1971). The matrices Gie in (1) 
depend, of course, on whether covariant or contravariant (or 
mixed) tensor components are chosen; but our results do not 
depend on the details of the G~k, and we also do not use index 
positions to distinguish between covariant, contravariant, or 
mixed components. 



LEE L I N D B L O M ,  R I C H A R D  E. M A R S H  AND J Q R G  WASER 2199 

To find the covariances between the new parameters 
cq and e~, and those between c~ and Vj, we must 
transform cov (Uij, UR3 to the new parameters e~ and 
V~, by equations that are analogous to the first portion 
of (2). Among the quantities needed are the partial 
derivatives of the Vj with respect to the Uk, which are 
equal to unity when the three indices are equal, and 
zero when any two of them are different, 

O Vj/3Uk,=O:~fij, . (3) 

Hence, the variances and covariances for the param- 
eters V~ are equal to the analogous quantities that per- 
tain to the diagonal components U,, 

COV (V t ,  Yj) : c o w  (Ut l  , V j j )  . (4) 

To obtain the covariances that involve the param- 
eters ek we proceed indirectly, by deriving expressions 
for the derivatives 3UJOO~k rather than c~e~/OU~j. 
Consider the operator R~(e~) which rotates about the 
principal axis at of the ellipsoid (a~- a, a s -  b, a a -  c), 
by an angle e~ (e~-e ,  c~2-fl, ~a--)')- The derivatives of 
the U~ are defined by the expression 

3U _ lim 1 [Rk(~Zk)UR/~(~k)-- U].  (5} 

For example, consider the partial derivatives of the 
U u with respect to e, a rotation around the a axis: 

[(i 0 0t(o00  [~_U!j_] = lim _1 cos e - s i n  ~ V 2 0 

sin~ cos~/  0Va /  

(i 0 0 t (i00  
x cos c~ sin c~ - Vz 0 

- s i n  c~ cos cq 0 V J  

0 

= 0 (Vz -Va)  . (6) 

( v , -  v~) 0 i 

The equations that involve fl and 7, are analogous and 
can be written down by suitable cyclic changes in (6). 

The substance of our developments can also be ob- 
tained by applying first order perturbation methods, as 
used e.g. in quantum mechanics (see e.g. Pauling & 
Wilson, 1935; Franklin, 1968), to the eigenvalues and 
eigenvectors of the temperature parameter ellipsoid. If 
we let the Utj be varied by qj (=  E:~), the change of the 
eigenvalues Uu= V~ turns out to be ~V~=E,. More- 
over, an expansion of the change fix ") of the (norm- 
alized) eigenvector x ") in terms of the original eigen- 
vectors, JxU)=~ eu, x °'), with egg=O, leads to e,,= 
Eu,/(Vz- Vk). This result is equivalent to the statement 
that e.g. x ") is rotated about x (2) by fifl=qz/(V~- Vz) 
and about x (a) by ~? = - q a / ( V ~ -  Va). 

We now use the relationships (6) to express co- 

variances that pertain to the U~j in terms ofcovariances 
that involve the ~, and then invert the resulting equa- 
tions. For example, we find that 

0U23 ~U~z 
COV (U23 , U12) = ~ t~o~i t~g cov  (O~l,O~k) 

l,k 

= ( V z -  Va) (V1- Vz) coy (e,),) (7) 
so that 

cov (~,:~) =cov  ( u~, u~)/( v ~ -  v~) ( v l -  v~) . 

In this way we bypass the singular aspects of (6) and 
of the analogous expressions for fl and 7, (their Jaco- 
bians vanish). The results are 

coy  (v~,~)  = c o y  ( u,,, v~) / (v~-  v~) 
coy  ( v . p )  = c o y  (u~,, v~) / (v~-  Vl) 
coy  (vl ,~,)  = c o v  (v~l, v~2)/(vl- v~) 
cov ( v , , c 0  = c o v  (u~, u23)/(v~- v3) 
c o y  ( v ~ , p )  = c o y  (u~, u13)/(v3- vl) 
c o y  ( v~, y) = c o y  ( u2~, u~2)/( v~ - v2) 
cov  (v3 ,~)  = c o v  (u~, u~)/( v~-  v~) 
cov  (V~,D) = c o v  (u3~, ul~)/(v3- v~) 
coy  (v~, ~) = c o v  ( u~, u~)/( Vl - v~) 
c o y  (~,~) = c o y  (u~, u2~)l(V,- v3) ~ 
coy  (c~,p) = c o v  (v~3, v~) / (v~-  v~) ( v~-  vl) 
c o y  (~,y) = c o y  (u~, u~) / (v~-  v~) ( v~-  v~) 
cov  (p,/~) = c o y  (u~, u,3)l(V~- v,) ~ 
coy  (/~, ~) = c o y  (u13 , u12)l(v 3 - Vl) ( v  1 - v2) 
coy  (~,~) = c o v  ( u . ,  u . ) / ( v ~ -  v~) ~. 

If the units of the V~ are A +z, the units ofcov (Vi, Vj) 
are A +4, those of coy (V. ~:), A +z. radian, and those of 
coy (cq, cg), (radian) z. 

The covariances between the V~ and c~, and the posi- 
tional coordinates of the atom, x~, can be derived in a 
similar manner if desired. Using the covariances be- 
tween the original temperature parameters B.o and the 
coordinates xk as starting point, we first go to the U~j 
by a relationship analogous to (2), 

Fig. 1. The standard deviation of y in relationship to the eigen- 
vectors of the temperature ellipsoid. 
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cov (U~i, Xg)= ~ Gl,Gjb cov (B,,~,,xk) 
ab 

and thence 

coy  ( V ~ , x ~ ) = c o v  (U.,x~). 

(8) 

To obtain the covariances between ~, fl, 7 and xk we 
employ transformations similar to (7), which give 

coy  (~,x~) = c o y  (u~,x~)/(v~- v~) 
coy ( A x e )  = c o y  (U~l,X~)/(v~- Vl) 
coy  (~,,x~) = c o y  (u,~,x~)/(Vl- v~). 

thermal  mot ion;  the amplitudes of vibration are ap- 
proximately equal along the minor  and intermediate 
principal axes of motion, but considerably larger in the 
direction of the major  axis. We report all intermediate 
results for the purposes of checking computer  pro- 
grams, and for the same reasons include more figures 
than we necessarily believe to be significant. 

Cell dimensions '*  a=8 .865  (2) ,~ ~ =  102-24 (1) ° 
b=9 .097  (2) f l=  90.30 (1) 
c=7 .346  (2) 7=117 .73(1 )  

In summary,  we have derived the t ransformations 
that yield covariances of the temperature parameters in 
terms of the quantities V, and aj. This system of var- 
iables is preferable to two others: (1) to that of  the V~ 
and the directional cosines of  the eigenvectors of  the 
temperature parameters, because the directional 
cosines are not independent  of  each other, offsetting 
the favorable aspect of  their geometrical significance; 
(2) to the system of the U~j, which are independent of  
each other (when i<j ) ,  but where the off-diagonal 
parameters have no intuitively obvious interpretation. 
In contrast, the V,= U,  and aj are both independent 
of  each other and subject to easy geometric interpreta- 
tion.* 

We note that the advantage of using the V~ and c~j is 
one of visualization, and not necessarily mathematical .  
Either of  the covariance matrices, that for the U,j 
(with i<_j) and that for the V, and c~j, contain all 
available covariance information regarding temper- 
ature parameters. 

An example 

As a numerical  example, we choose a carboxylate 
oxygen a tom in the structure of L-N-acetylhistidine 
monohydra te  (Kistenmacher & Marsh, 1971). This 
compound  forms triclinic crystals, space group P1,  
with two molecules in the unit cell. The data were 
collected using CuKc~ radiation out to 20=154° ;  
least-squares refinement led to an R index of  0-029 for 
2152 reflections. The s tandard deviations in the posi- 
tions of the nonhydrogen atoms are about 0.003 A. 
The atom we selected has moderately anisotropic 

Anisotropic temperature parameters,  in the form 
exp ( -  b11h2.. . - b23kl)" 

b11= 8"968x 10 -a 
b22 = 6"945 
b33 = 24" 172 
hi2 - 7"071 
ba3 = -8"135 
b23 = 2"435 

The variance-covariance matrix for these parameters is 
shown at the top of Table 1. 

To transform the coefficients b~j to main  axes it is 
convenient to write the exponent of  the temperature 

* T h e  s t a n d a r d  d e v i a t i o n s  o f  the  cell d i m e n s i o n s  were  n o t  
used  in the  p r e s e n t  ca l cu l a t i ons .  T h e  ang les  ct, fl, 7 are ,  o f  
c o u r s e ,  n o t  r e l a t ed  to  the  ang les  used  to  def ine  the  o r i e n t a -  
t i ona l  v a r i a n c e s  a n d  c o v a r i a n c e s  o f  the  e i g e n v e c t o r s  o f  the  
t e m p e r a t u r e  e l l ipsoid .  

Table 1. Covariance matrices o f  temperature coefficients 

I0  I0 x COy (bij , bk t  ) 

bll bz2 b33 bz2 bz3 b23 

bit 430.5 -7.5 -199.7 351.3 -7.3 -55.2 

b~ -7.5 377.2 -166.7 341.9 70.8 121,1 

b33 -199,7 -166.7 1314.5 -191.1 -124.1 230.4 

b~z 351.3 341.9 -191.1 1107.4 149.4 -12.7 

b~3 -7.3 70.8 -124.1 149.4 1804.6 696.7 
b23 -55.2 121.1 230.4 -12.7 696.7 1711.3 

UII 
* W h e n  the  v a r i a n c e s  (i.e. the  d i a g o n a l  t e r m s  o f  the  co-  

variance matrix) of the variables V~ and o~j are dominant, the u,, 36.08 
U22 -I0.25 

situation regarding the uncertainties of the tcmperature pa- 
rameters is particularly easy to visualize, because essentially u33 -14.71 
all information can be conveyed by the standard deviations u,= -2.20 
of the V~ and 0~j. The more common case is, however, that u,3 2.18 
there are strong correlations between the errors in at least u~3 0.69 
some of the V~ and ~. The proper assessment of these errors 
requires not only a knowledge of the standard deviations but 
of the (off-diagonal) covariances as well. To report only stan- 
dard deviations in this case would be an oversimplification v, 
that could easily mislead and must be guarded against. The v, 0.00361 
problem of variances and covariances has been considered v~ -0.00103 
recently by Johnson (1971). He shows for idealized data that v~ -0.00147 
at least approximately the covariance matrix of the temper- c,, -0.00141 
ature parameters, cov (B~, B~), is related to the positional co- c._. o. 00435 
variance matrix coy (x~, x~). ~3 0.1507 

I0  8 x COV (Ui j ,Uk~)  

U=2 U~ U~2 U~3 U= 3 

-10.25 -14,71 -2.20 2.18 0.69 

45.03 -17.90 -2.89 0.29 -2,50 
-17,90 100.97 0.43 1.43 -4,08 

-2.89 0.43 23.75 -1.15 1.80 

0.29 1.43 -1.15 36,78 -3.20 

-2.50 -4.08 1.80 -3.20 38.98 

10 4 x COV (V i ,e~)  

V 2 V3 a I ~ 03 

-0.00103 -0.00147 -0.00141 0.00435 0.1507 
0.00450 -0.00179 0.00513 0.00058 0.1986 

-0.00179 0.01010 0.00837 0.00286 -0.0297 

0.00513 0.00837 1.639 0.131 2.536 
0.00058 0.00286 0.131 1.458 1.569 

0.1986 -0.0297 2.536 1.569 1119 
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factor in the form _ ( 1 ) ~  B~jh~hj(a 7 " a~), where a 
U 

factor ½ must not be overlooked when going from the 
btj to the Btj when i¢j .  Similarly, when i=j, k =/ ,  each 
element of the covariance matrix cov (B~j, Bkt) follows 
directly from the related element of coy (btj, bkt), but 
when i = j  and k ¢ / ,  or when i Cj  and k = l an additional 
factor ½ must be used, and a factor ¼ when iCj  and 
k # l .  In addition to transforming to main axes, we 
divide by 8re 2, which yields the diagonal matrix U~j. 
The values of the Uu and of the directional cosines of 
these eigenvectors relative to the crystallographic axes 
are: 

a b c 
Ul1=0"02139 A 2 Ull -0"0586 0"8801 0"0204 
U22=0"02285 Uz2 0"9359 -0"4692 0"3441 
U33 =0"07161 U33 0"3474 0"0730 -0"9387 

Note that these eigenvectors should form a right- 
handed system of axes for a proper connection with 
the sense of rotation around these eigenvectors. 

The covariance matrix of the U~j follows from that 
of the B~j by equations (1) and (2). The result is given 
in the middle of Table 1. The final covariances be- 
tween the V~ and V i, the V~ and c 9, and the ch and c 9, 
are shown in the bottom matrix of Table 1. The units 
for the different terms just enumerated are, respec- 

tively, ~4, A2.radian, and radian 2. Considering just the 
square roots of the diagonal terms of this matrix we 
find 

V1= 0.0214 _+ 0.0006 A2 a(~.l)= _+ 0"7 ° 
V2 = 0.0228 + 0.0007 a(~z) = + 0.7 
V3=0.0716 + 0.0010 a(~.3) = + 19. 

Of special note is the relatively large value of the 
standard deviation associated with ~3, which reflects 
the near equality of I/1 and 1/2. We emphasize, how- 
ever, that these standard deviations alone do not give 
the complete story, because the covariances are by no 
means negligible. 
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The structure of benzamide has been refined using counter-measured intensity data (1037 planes). 
Libration corrections have been applied to the full-matrix least-squares refined parameters. The prin- 
cipal interatomic distances are C-C (mean benzene ring) 1.391 (5), C-O 1-249 (3), C-N 1.342 (3) and 
C-C (carboamide) 1.501(4)/~. 

Previous work 

Earlier determinations of the crystal structure of ben- 
zamide have been reported, by Penfold & White (1959) 
and Blake & Small (1959). Both of these were based 
upon two-dimensional photographically recorded data 
and are consequently, by present day standards, of 
limited accuracy. The results reported here are of a 
recent refinement making use of more extended experi- 

mental data collected at the Chemistry Department, 
University of Birmingham. 

Experimental  

An evenly developed crystal of mean dimension 0.2 
mm was grown from benzene solution and used for 
the experimental measurements. The crystal was 
mounted on the three-circle diffractometer of Small & 

A C 28B - 15 


